enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    A metric space M is compact if every open cover has a finite subcover (the usual topological definition). A metric space M is compact if every sequence has a convergent subsequence. (For general topological spaces this is called sequential compactness and is not equivalent to compactness.) A metric space M is compact if it is complete and ...

  3. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    A metric space is called complete if all Cauchy sequences converge. Every incomplete space is isometrically embedded, as a dense subset, into a complete space (the completion). Every compact metric space is complete; the real line is non-compact but complete; the open interval (0,1) is incomplete. Every Euclidean space is also a complete metric ...

  4. Metric space aimed at its subspace - Wikipedia

    en.wikipedia.org/wiki/Metric_space_aimed_at_its...

    The space Aim(X) is injective (hyperconvex in the sense of Aronszajn-Panitchpakdi) – given a metric space M, which contains Aim(X) as a metric subspace, there is a canonical (and explicit) metric retraction of M onto Aim(X) (HolsztyƄski 1966).

  5. Completely metrizable space - Wikipedia

    en.wikipedia.org/wiki/Completely_metrizable_space

    The distinction between a completely metrizable space and a complete metric space lies in the words there exists at least one metric in the definition of completely metrizable space, which is not the same as there is given a metric (the latter would yield the definition of complete metric space). Once we make the choice of the metric on a ...

  6. Complete metric space - Wikipedia

    en.wikipedia.org/wiki/Complete_metric_space

    The space C [a, b] of continuous real-valued functions on a closed and bounded interval is a Banach space, and so a complete metric space, with respect to the supremum norm. However, the supremum norm does not give a norm on the space C ( a , b ) of continuous functions on ( a , b ) , for it may contain unbounded functions .

  7. Intrinsic metric - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_metric

    A metric space is a length metric space if the intrinsic metric agrees with the original metric of the space. If the space has the stronger property that there always exists a path that achieves the infimum of length (a geodesic) then it is called a geodesic metric space or geodesic space.

  8. Contraction mapping - Wikipedia

    en.wikipedia.org/wiki/Contraction_mapping

    In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number < such that for all x and y in M,

  9. Covering number - Wikipedia

    en.wikipedia.org/wiki/Covering_number

    The covering number quantifies the size of a set and can be applied to general metric spaces. Two related concepts are the packing number, the number of disjoint balls that fit in a space, and the metric entropy, the number of points that fit in a space when constrained to lie at some fixed minimum distance apart.