Search results
Results from the WOW.Com Content Network
He also popularized the use of the generalised hough transform in computer vision in his paper "Generalizing the Hough Transform to Detect Arbitrary Shapes." [3] He is also known as a proponent of active vision techniques for computer vision systems [4] as well as approaches to understanding human vision. [5]
The Hough transform is a feature extraction technique used in image analysis, computer vision, pattern recognition, and digital image processing. [ 1 ] [ 2 ] The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure.
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to ...
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) [1] The basic idea of Hough transform (HT) is to implement a voting ...
The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.
The images that constitute the input to a computer vision system are, however, also subject to perspective distortions. To obtain interest points that are more robust to perspective transformations, a natural approach is to devise a feature detector that is invariant to affine transformations .
Generalized structure tensor can be used as an alternative to Hough transform in image processing and computer vision to detect patterns whose local orientations can be modelled, for example junction points. The main differences comprise: