Search results
Results from the WOW.Com Content Network
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
The double helix is an important tertiary structure in nucleic acid molecules which is intimately connected with the molecule's secondary structure. A double helix is formed by regions of many consecutive base pairs. The nucleic acid double helix is a spiral polymer, usually right-handed, containing two nucleotide strands which base pair together.
Each end of the double helix has an exposed 5' phosphate on one strand and an exposed 3′ hydroxyl group (—OH) on the other. DNA is a long polymer made from repeating units called nucleotides . [ 6 ] [ 7 ] The structure of DNA is dynamic along its length, being capable of coiling into tight loops and other shapes. [ 8 ]
The pitch of a helix is the height of one complete helix turn, measured parallel to the axis of the helix. A double helix consists of two (typically congruent) helices with the same axis, differing by a translation along the axis. [3] A circular helix (i.e. one with constant radius) has constant band curvature and constant torsion. The slope of ...
By convention, if the base sequence of a single strand of DNA is given, the left end of the sequence is the 5′ end, while the right end of the sequence is the 3′ end. The strands of the double helix are anti-parallel, with one being 5′ to 3′, and the opposite strand 3′ to 5′.
Z-DNA is a relatively rare left-handed double-helix. Given the proper sequence and superhelical tension, it can be formed in vivo but its function is unclear. It has a more narrow, more elongated helix than A or B. Z-DNA's major groove is not really a groove, and it has a narrow minor groove.
The importance of an antiparallel DNA double helix structure is because of its hydrogen bonding between the complementary nitrogenous base pairs.If the DNA structure were to be parallel, the hydrogen bonding would not be possible, as the base pairs would not be paired in the known way. [4]
They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" (or "Watson–Crick–Franklin") base pairs ( guanine – cytosine and adenine – thymine ) [ 1 ] allow the DNA helix to maintain a regular helical structure that is ...