Search results
Results from the WOW.Com Content Network
Ayrton shunt switching principle. The Ayrton shunt or universal shunt is a high-resistance shunt used in galvanometers to increase their range [1] without changing the damping. [2] The circuit is named after its inventor William E. Ayrton. [3] Multirange ammeters that use this technique are more accurate than those using a make-before-break ...
A shunt is a device that is designed to provide a low-resistance path for an electrical current in a circuit. It is typically used to divert current away from a system or component in order to prevent overcurrent. Electrical shunts are commonly used in a variety of applications including power distribution systems, electrical measurement ...
Ayrton shunt switching principle To make a multi-range ammeter, a selector switch can be used to connect one of a number of shunts across the meter. It must be a make-before-break switch to avoid damaging current surges through the meter movement when switching ranges.
An Ayrton–Perry winding (named for William Edward Ayrton and John Perry) is a type of bifilar winding pattern used in winding wire on forms to make RF resistors. Its advantage is that the resulting coil of wire has low values of parasitic inductance and parasitic capacitance . [ 1 ]
German physicist Wilhelm Eduard Weber made use of the bifilar coil in his 1848 electrodynamometer. [3] Large examples were used in inventor Daniel McFarland Cook's 1871 "Electro-Magnetic Battery" [4] and Nikola Tesla's high frequency power experiments at the end of the 1800s. [5]
As shunt resistance decreases, the current diverted through the shunt resistor increases for a given level of junction voltage. The result is that the voltage-controlled portion of the I-V curve begins to sag far from the origin, producing a significant decrease in I out {\displaystyle I_{\text{out}}} and a slight reduction in V OC .
Manganin foil and wire is used in the manufacture of resistors, particularly ammeter shunts, because of its virtually zero temperature coefficient of resistance value [2] and long term stability. Several Manganin resistors served as the legal standard for the ohm in the United States from 1901 to 1990. [ 3 ]
To achieve a fill factor over 86%, a high efficiency heterojunction cell must have a very high shunt resistance, a negligible series resistance, high quality bulk silicon with very long minority carrier lifetime (~15 ms), excellent passivation (saturation current density below 0.8 fA/cm 2).