Search results
Results from the WOW.Com Content Network
Activator binds to an inducer and the complex binds to the activation sequence and activates target gene. [2] Removing the inducer stops transcription. [2] Because a small inducer molecule is required, the increased expression of the target gene is called induction. [2] The lactose operon is one example of an inducible system. [2]
The L-arabinose operon, also called the ara or araBAD operon, is an operon required for the breakdown of the five-carbon sugar L-arabinose in Escherichia coli. [1] The L-arabinose operon contains three structural genes: araB, araA, araD (collectively known as araBAD), which encode for three metabolic enzymes that are required for the metabolism of L-arabinose. [2]
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
[1] [2] [3] Activator-binding sites may be located very close to the promoter or numerous base pairs away. [2] [3] If the regulatory sequence is located far away, the DNA will loop over itself (DNA looping) in order for the bound activator to interact with the transcription machinery at the promoter site. [2] [3]
[2] [7] The N-terminal arm of AraC interacts with its DNA binding domain, allowing two AraC proteins to bind to the O 2 and I 1 operator sites. [1] The O 2 operator is situated within the araC gene. An AraC dimer also binds to the O 1 operator and represses the P C promoter via a negative autoregulatory feedback loop. [2]
Index inducer or just inducer predictably induce metabolism via a given pathway and are commonly used in prospective clinical drug-drug interaction studies. [2]Strong, moderate, and weak inducers are drugs that decreases the AUC of sensitive index substrates of a given metabolic pathway by ≥80%, ≥50% to <80%, and ≥20% to <50%, respectively.
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
Though ONPG mimics lactose and is hydrolyzed by β-galactosidase, it is unable to act as an inducer for the lac operon. Without another lactose analog that can act as an inducer, such as isopropyl β- D -1-thiogalactopyranoside (IPTG), β-galactosidase will not be transcribed and ONPG will not be hydrolyzed.