Search results
Results from the WOW.Com Content Network
Exergy is neither a thermodynamic property of matter nor a thermodynamic potential of a system. Exergy and energy always have the same units, and the joule (symbol: J) is the unit of energy in the International System of Units (SI). The internal energy of a system is always measured from a fixed reference state and is therefore always a state ...
The British imperial units and U.S. customary units for both energy and work include the foot-pound force (1.3558 J), the British thermal unit (BTU) which has various values in the region of 1055 J, the horsepower-hour (2.6845 MJ), and the gasoline gallon equivalent (about 120 MJ).
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.
The CGS energy unit is the erg and the imperial and US customary unit is the foot pound. Other energy units such as the electronvolt , food calorie or thermodynamic kcal (based on the temperature change of water in a heating process), and BTU are used in specific areas of science and commerce.
SI electromagnetism units. Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb ...
The SI unit for specific energy is the joule per kilogram (J/kg). Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W⋅h/kg) in the field of batteries.
In thermal engineering, exergy efficiency (also known as the second-law efficiency or rational efficiency) computes the effectiveness of a system relative to its performance in reversible conditions. It is defined as the ratio of the thermal efficiency of an actual system compared to an idealized or reversible version of the system for heat ...
≈ 1 British thermal unit (BTU), depending on the temperature [59] 1.4×10 3 J: Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant) [93] 2.3×10 3 J: Energy to vaporize 1 g of water into steam [94] 3×10 3 J: Lorentz force can crusher pinch [95] 3.4×10 3 J