Search results
Results from the WOW.Com Content Network
A consumer's indirect utility (,) can be computed from their utility function (), defined over vectors of quantities of consumable goods, by first computing the most preferred affordable bundle, represented by the vector (,) by solving the utility maximization problem, and second, computing the utility ((,)) the consumer derives from that ...
A single-attribute utility function maps the amount of money a person has (or gains), to a number representing the subjective satisfaction he derives from it. The motivation to define a utility function comes from the St. Petersburg paradox: the observation that people are not willing to pay much for a lottery, even if its expected monetary gain is infinite.
A possible solution is to calculate n one-dimensional cardinal utility functions - one for each attribute. For example, suppose there are two attributes: apples and bananas (), both range between 0 and 99. Using VNM, we can calculate the following 1-dimensional utility functions:
Standard utility functions represent ordinal preferences. The expected utility hypothesis imposes limitations on the utility function and makes utility cardinal (though still not comparable across individuals). Although the expected utility hypothesis is standard in economic modelling, it has been found to be violated in psychological experiments.
E.g., the commodity is a heterogeneous resource, such as land. Then, the utility functions are not functions of a finite number of variables, but rather set functions defined on Borel subsets of the land. The natural generalization of a linear utility function to that model is an additive set function.
Hence, his utility is (,). In a cloud computing environment, there is a large server that runs many different tasks. Suppose a certain type of a task requires 2 CPUs, 3 gigabytes of memory and 4 gigabytes of disk-space to complete. The utility of the user is equal to the number of completed tasks.
A multi-utility representation (MUR) of a relation is a set U of utility functions, such that : (). In other words, A is preferred to B if and only if all utility functions in the set U unanimously hold this preference. The concept was introduced by Efe Ok.
The term E-utility for "experience utility" has been coined [2] to refer to the types of "hedonistic" utility like that of Bentham's greatest happiness principle. Since morality affects decisions, a VNM-rational agent's morals will affect the definition of its own utility function (see above).