enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    If the fluid is a gas, certain properties of the gas influence the drag and those properties must also be taken into account. Those properties are conventionally considered to be the absolute temperature of the gas, and the ratio of its specific heats. These two properties determine the speed of sound in the gas at its given temperature.

  3. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    Those forces can be added together and the component of that force that acts downstream represents the drag force, . The nature of these normal forces combines shock wave effects, vortex system generation effects, and wake viscous mechanisms. Viscosity of the fluid has a major effect on drag. In the absence of viscosity, the pressure forces ...

  4. Drop impact - Wikipedia

    en.wikipedia.org/wiki/Drop_impact

    A drop striking a liquid surface; in this case, both the drop and the surface are water. In fluid dynamics, drop impact occurs when a drop of liquid strikes a solid or liquid surface. The resulting outcome depends on the properties of the drop, the surface, and the surrounding fluid, which is most commonly a gas.

  5. Displacement (fluid) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(fluid)

    The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [1] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2]

  6. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    When an object is immersed in a liquid, the liquid exerts an upward force, which is known as the buoyant force, that is proportional to the weight of the displaced liquid. The sum force acting on the object, then, is equal to the difference between the weight of the object ('down' force) and the weight of displaced liquid ('up' force).

  7. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    The downward force of gravity (F g) equals the restraining force of drag (F d) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).

  8. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  9. Drop (liquid) - Wikipedia

    en.wikipedia.org/wiki/Drop_(liquid)

    The limit of this formula, as α goes to 90°, gives the maximum weight of a pendant drop for a liquid with a given surface tension, . m g = π d γ {\displaystyle \,mg=\pi d\gamma } This relationship is the basis of a convenient method of measuring surface tension, commonly used in the petroleum industry.