Search results
Results from the WOW.Com Content Network
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
In 2D, every point can be defined as a projection of a 3D point, given as the ordered triple (x, y, w). The mapping from 3D to 2D coordinates is (x′, y′) = ( x / w , y / w ). We can convert 2D points to homogeneous coordinates by defining them as (x, y, 1).
Let P be the point with coordinates (x 0, y 0) and let the given line have equation ax + by + c = 0. Also, let Q = ( x 1 , y 1 ) be any point on this line and n the vector ( a , b ) starting at point Q .
In this case one divides the polygons into small sub-polygons and determines the smallest window (rectangle with sides parallel to the coordinate axes) for any sub-polygon. Before starting the time-consuming determination of the intersection point of two line segments any pair of windows is tested for common points. See. [3]
For any point P, a line is drawn through P perpendicular to each axis, and the position where it meets the axis is interpreted as a number. The two numbers, in that chosen order, are the Cartesian coordinates of P. The reverse construction allows one to determine the point P given its coordinates.
A ray with a terminus at A, with two points B and C on the right. Given a line and any point A on it, we may consider A as decomposing this line into two parts. Each such part is called a ray and the point A is called its initial point. It is also known as half-line, a one-dimensional half-space. The point A is considered to be a member of the ray.
The coordinate of a point P is defined as the signed distance from O to P, where the signed distance is the distance taken as positive or negative depending on which side of the line P lies. Each point is given a unique coordinate and each real number is the coordinate of a unique point. [4] The number line
In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.