enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    In reality there is a lot more. A more rigorous analysis would include wake rotation, the effect of variable geometry, the important effect of airfoils on the flow, etc. Within airfoils alone, the wind turbine aerodynamicist has to consider the effects of surface roughness, dynamic stall tip losses, and solidity, among other problems.

  3. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...

  4. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  5. Blade element momentum theory - Wikipedia

    en.wikipedia.org/wiki/Blade_Element_Momentum_Theory

    Consider fluid flow around an airfoil. The flow of the fluid around the airfoil gives rise to lift and drag forces. By definition, lift is the force that acts on the airfoil normal to the apparent fluid flow speed seen by the airfoil. Drag is the forces that acts tangential to the apparent fluid flow speed seen by the airfoil.

  6. Blade solidity - Wikipedia

    en.wikipedia.org/wiki/Blade_solidity

    In an airfoil, the mean line curvature is designed to change the flow direction, the vane thickness is for strength and the streamlined shape is to delay the onset of boundary layer separation. Taking all the design factors of an airfoil, the resulting forces of lift and drag can be expressed in terms of lift and drag coefficient.

  7. Foil (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/Foil_(fluid_mechanics)

    Streamlines around a NACA 0012 airfoil at moderate angle of attack. A foil generates lift primarily because of its shape and angle of attack. When oriented at a suitable angle, the foil deflects the oncoming fluid, resulting in a force on the foil in the direction opposite to the deflection. This force can be resolved into two components: lift ...

  8. Aerodynamic center - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_center

    The distribution of forces on a wing in flight are both complex and varying. This image shows the forces for two typical airfoils, a symmetrical design on the left, and an asymmetrical design more typical of low-speed designs on the right. This diagram shows only the lift components; the similar drag considerations are not illustrated.

  9. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    In words, the wind axes force is equal to the centripetal acceleration. The moment equation is the time derivative of the angular momentum: = where M is the pitching moment, and B is the moment of inertia about the pitch axis. Let: =, the pitch rate. The equations of motion, with all forces and moments referred to wind axes are, therefore: