Search results
Results from the WOW.Com Content Network
In December 2012 the first candidate galaxies dating to before reionization were discovered, when UDFy-38135539, EGSY8p7 and GN-z11 galaxies were found to be around 380–550 million years after the Big Bang, 13.4 billion years ago and at a distance of around 32 billion light-years (9.8 billion parsecs).
The reason is that these galaxy formation models predict a large number of mergers. If disk galaxies merge with another galaxy of comparable mass (at least 15 percent of its mass) the merger will likely destroy, or at a minimum greatly disrupt the disk, and the resulting galaxy is not expected to be a disk galaxy (see next section).
c. 10 −43 seconds: Grand unification epoch begins: While still at an infinitesimal size, the universe cools down to 10 32 kelvin. Gravity separates and begins operating on the universe—the remaining fundamental forces stabilize into the electronuclear force, also known as the Grand Unified Force or Grand Unified Theory (GUT), mediated by (the hypothetical) X and Y bosons which allow early ...
2013 — The galaxy Z8 GND 5296 is confirmed by spectroscopy to be one of the most distant galaxies found up to this time. Formed just 700 million years after the Big Bang, expansion of the universe has carried it to its current location, about 13 billion light years away from Earth (30 billion light years comoving distance). [19]
The Stelliferous Era, is defined as, "6 < n < 14". This is the current era, in which matter is arranged in the form of stars, galaxies, and galaxy clusters, and most energy is produced in stars. Stars will be the most dominant objects of the universe in this era. Massive stars use up their fuel very rapidly, in as little as a few million years.
Schematic timeline of the universe, depicting reionization's place in cosmic history. The first phase change of hydrogen in the universe was recombination, which occurred at a redshift z = 1089 (379,000 years after the Big Bang), due to the cooling of the universe to the point where the rate of recombination of electrons and protons to form neutral hydrogen was higher than the reionization rate.
Structure formation began some time after recombination, when the early universe cooled enough from expansion to allow the formation of stable hydrogen and helium atoms. [7]: 6 At this point the cosmic microwave background(CMB) is emitted; many careful measurements of the CMB provide key information about the initial state of the universe before structure formation.
The initial singularity is a singularity predicted by some models of the Big Bang theory to have existed before the Big Bang. [1] The instant immediately following the initial singularity is part of the Planck epoch, the earliest period of time in the history of our universe.