Search results
Results from the WOW.Com Content Network
where either all a n are positive or all a n are negative, is called an alternating series. The alternating series test guarantees that an alternating series converges if the following two conditions are met: [1] [2] [3] | | decreases monotonically [a], i.e., | + | | |, and
Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms a n converge to 0 monotonically , but this condition is not necessary for convergence.
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.
Suppose that we have two series and with , > for all . Then if lim n → ∞ a n b n = c {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with 0 < c < ∞ {\displaystyle 0<c<\infty } , then either both series converge or both series diverge.
This means that if the original series converges, so does the new series after grouping: all infinite subsequences of a convergent sequence also converge to the same limit. However, if the original series diverges, then the grouped series do not necessarily diverge, as in this example of Grandi's series above.
[2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.
Furthermore, if Σa n is divergent, a second divergent series Σb n can be found which diverges more slowly: i.e., it has the property that lim n->∞ (b n /a n) = 0. Convergence tests essentially use the comparison test on some particular family of a n, and fail for sequences which converge or diverge more slowly.