Search results
Results from the WOW.Com Content Network
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
Antonie van Leeuwenhoek (1632–1723). The field of microscopy (optical microscopy) dates back to at least the 17th-century.Earlier microscopes, single lens magnifying glasses with limited magnification, date at least as far back as the wide spread use of lenses in eyeglasses in the 13th century [2] but more advanced compound microscopes first appeared in Europe around 1620 [3] [4] The ...
A bright-field microscope has many important parts including; the condenser, the objective lens, the ocular lens, the diaphragm, and the aperture. Some other pieces of the microscope that are commonly known are the arm, the head, the illuminator, the base, the stage, the adjusters, and the brightness adjuster.
Huygens eyepiece diagram. Huygens eyepieces consist of two plano-convex lenses with the plane sides towards the eye separated by an air gap. The lenses are called the eye lens and the field lens. The focal plane is located between the two lenses. It was invented by Christiaan Huygens in the late 1660s and was the first compound (multi-lens ...
Zacharias Janssen; also Zacharias Jansen or Sacharias Jansen; 1585 – pre-1632 [1]) was a Dutch spectacle-maker who lived most of his life in Middelburg.He is associated with the invention of the first optical telescope and/or the first truly compound microscope, but these claims (made 20 years after his death) may be fabrications put forward by his son.
Light field microscopy (LFM) is a scanning-free 3-dimensional (3D) microscopic imaging method based on the theory of light field.This technique allows sub-second (~10 Hz) large volumetric imaging ([~0.1 to 1 mm] 3) with ~1 μm spatial resolution in the condition of weak scattering and semi-transparence, which has never been achieved by other methods.
Schematic of a fluorescence microscope. The majority of fluorescence microscopes, especially those used in the life sciences, are of the epifluorescence design shown in the diagram. Light of the excitation wavelength illuminates the specimen through the objective lens.
A paper published in 2009 described a method of photomicrography in a smartphone using a free-hand technique. [5] An operator only need focus the camera through the eyepiece of a microscope and capture a photo normally. Later, adapters were designed for the purpose and sold commercially or home-made. [6]