Ads
related to: long division with decimal remaindersgenerationgenius.com has been visited by 100K+ users in the past month
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- Teachers, Try It Free
Get free access for 30 days
No credit card of commitment needed
- Loved By Teachers
See What the Teachers Have To
Say About Generation Genius.
- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Grades K-2 Math Lessons
Search results
Results from the WOW.Com Content Network
If necessary, simplify the long division problem by moving the decimals of the divisor and dividend by the same number of decimal places, to the right (or to the left), so that the decimal of the divisor is to the right of the last digit. When doing long division, keep the numbers lined up straight from top to bottom under the tableau.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In order to convert a rational number represented as a fraction into decimal form, one may use long division. For example, consider the rational number 5 / 74 : 0.0 675 74 ) 5.00000 4.44 560 518 420 370 500 etc. Observe that at each step we have a remainder; the successive remainders displayed above are 56, 42, 50.
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5, which is d. This holds in general.
It is an abbreviated form of long division — whereby the products are omitted and the partial remainders are notated as superscripts. As a result, a short division tableau is shorter than its long division counterpart — though sometimes at the expense of relying on mental arithmetic, which could limit the size of the divisor.
The result of this procedure is a number which is smaller than the original whenever the original has more than one digit, leaves the same remainder as the original after division by nine, and may be obtained from the original by subtracting a multiple of 9 from it. The name of the procedure derives from this latter property.
Ads
related to: long division with decimal remaindersgenerationgenius.com has been visited by 100K+ users in the past month