enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The information gain in decision trees (,), which is equal to the difference between the entropy of and the conditional entropy of given , quantifies the expected information, or the reduction in entropy, from additionally knowing the value of an attribute . The information gain is used to identify which attributes of the dataset provide the ...

  4. Information diagram - Wikipedia

    en.wikipedia.org/wiki/Information_diagram

    Information diagrams have also been applied to specific problems such as for displaying the information theoretic similarity between sets of ontological terms. [ 3 ] Venn diagram showing additive and subtractive relationships among various information measures associated with correlated variables X and Y .

  5. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...

  6. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    The mutual information is used to learn the structure of Bayesian networks/dynamic Bayesian networks, which is thought to explain the causal relationship between random variables, as exemplified by the GlobalMIT toolkit: [36] learning the globally optimal dynamic Bayesian network with the Mutual Information Test criterion.

  7. Quantities of information - Wikipedia

    en.wikipedia.org/wiki/Quantities_of_information

    Although, in both cases, mutual information expresses the number of bits of information common to the two sources in question, the analogy does not imply identical properties; for example, differential entropy may be negative. The differential analogies of entropy, joint entropy, conditional entropy, and mutual information are defined as follows:

  8. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    To do this, one must acknowledge the difference between the measured entropy of a system—which depends only on its macrostate (its volume, temperature etc.)—and its information entropy, [6] which is the amount of information (number of computer bits) needed to describe the exact microstate of the system. The measured entropy is independent ...

  9. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The entropy is thus a measure of the uncertainty about exactly which quantum state the system is in, given that we know its energy to be in some interval of size . Deriving the fundamental thermodynamic relation from first principles thus amounts to proving that the above definition of entropy implies that for reversible processes we have: