enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Fermat–Catalan conjecture. In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many ...

  3. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, it is possible to expand the polynomial (x + y) n into a sum involving terms of the form ax b y c, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending ...

  4. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    But as Fermat proved, there can be no integer solution to the equation x 4 − y 4 = z 2, of which this is a special case with z = u 2 − v 2, x = w and y = 2s. The first step of Fermat's proof is to factor the left-hand side [30] (x 2 + y 2)(x 2y 2) = z 2. Since x and y are coprime (this can be assumed because otherwise the factors could ...

  5. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes. For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...

  6. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula. which using factorial notation can be compactly expressed as.

  7. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    Visual proof that (x + y)2 ≥ 4xy. Taking square roots and dividing by two gives the AM–GM inequality. [1] In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same ...

  8. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    If the positive-definiteness condition is replaced by merely requiring that , for all , then one obtains the definition of positive semi-definite Hermitian form. A positive semi-definite Hermitian form ⋅ , ⋅ {\displaystyle \langle \cdot ,\cdot \rangle } is an inner product if and only if for all x {\displaystyle x} , if x , x = 0 ...

  9. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = ⁡ or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.