Search results
Results from the WOW.Com Content Network
Fermat–Catalan conjecture. In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many ...
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, it is possible to expand the polynomial (x + y) n into a sum involving terms of the form ax b y c, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending ...
But as Fermat proved, there can be no integer solution to the equation x 4 − y 4 = z 2, of which this is a special case with z = u 2 − v 2, x = w and y = 2s. The first step of Fermat's proof is to factor the left-hand side [30] (x 2 + y 2)(x 2 − y 2) = z 2. Since x and y are coprime (this can be assumed because otherwise the factors could ...
In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes. For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...
Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula. which using factorial notation can be compactly expressed as.
Visual proof that (x + y)2 ≥ 4xy. Taking square roots and dividing by two gives the AM–GM inequality. [1] In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same ...
If the positive-definiteness condition is replaced by merely requiring that , for all , then one obtains the definition of positive semi-definite Hermitian form. A positive semi-definite Hermitian form ⋅ , ⋅ {\displaystyle \langle \cdot ,\cdot \rangle } is an inner product if and only if for all x {\displaystyle x} , if x , x = 0 ...
Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.