Search results
Results from the WOW.Com Content Network
Stratified sampling. In statistics, stratified sampling is a method of sampling from a population which can be partitioned into subpopulations. In statistical surveys, when subpopulations within an overall population vary, it could be advantageous to sample each subpopulation (stratum) independently.
Graphic breakdown of stratified random sampling. In statistics, stratified randomization is a method of sampling which first stratifies the whole study population into subgroups with same attributes or characteristics, known as strata, then followed by simple random sampling from the stratified groups, where each element within the same subgroup are selected unbiasedly during any stage of the ...
Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined ...
Proportionate stratified sampling involves selecting participants from each stratum in proportions that match the general population. [1] This method can be used to improve the sample's representation of the population, by ensuring that characteristics (and their proportions) of the study sample reflect the characteristics of the population.
Sampling (statistics) In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population and statisticians ...
In 2000, Liu and Aragon proposed a decomposition of unequal selection probabilities design effect for different strata in stratified sampling. [39] In 2002, Liu et al. extended that work to account for stratified samples, where within each stratum is a set of unequal selection probability weights.
In a stratified variant of this approach, the random samples are generated in such a way that the mean response value (i.e. the dependent variable in the regression) is equal in the training and testing sets. This is particularly useful if the responses are dichotomous with an unbalanced representation of the two response values in the data.
In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. [1] Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results ...