Search results
Results from the WOW.Com Content Network
Basic definitions. The null hypothesis and the alternative hypothesis are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise. The statement being tested in a test of statistical significance is called the null ...
The test of significance is designed to assess the strength of the evidence against the null hypothesis. Usually, the null hypothesis is a statement of 'no effect' or 'no difference'." [2] Null hypothesis is often denoted as H 0. The statement that is being tested against the null hypothesis is the alternative hypothesis. [2]
Definition. The p -value is the probability under the null hypothesis of obtaining a real-valued test statistic at least as extreme as the one obtained. Consider an observed test-statistic from unknown distribution . Then the p -value is what the prior probability would be of observing a test-statistic value at least as "extreme" as if null ...
The alternative hypothesis, as the name suggests, is the alternative to the null hypothesis: it states that there is some kind of relation. The alternative hypothesis may take several forms, depending on the nature of the hypothesized relation; in particular, it can be two-sided (for example: there is some effect, in a yet unknown direction) or ...
In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. For example, an innocent person may be convicted. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. For example: a guilty person may be not convicted.
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
Power (statistics) In frequentist statistics, power is a measure of the ability of an experimental design and hypothesis testing setup to detect a particular effect if it is truly present. In typical use, it is a function of the test used (including the desired level of statistical significance), the assumed distribution of the test (for ...
The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. [1] The one-sample version serves a purpose similar to that of the one-sample Student's t -test. [2]