enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The ANOVA F-test can be used to assess whether any of the treatments are on average superior, or inferior, to the others versus the null hypothesis that all four treatments yield the same mean response. This is an example of an "omnibus" test, meaning that a single test is performed to detect any of several possible differences.

  3. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Typically, however, the one-way ANOVA is used to test for differences among at least three groups, since the two-group case can be covered by a t-test. [56] When there are only two means to compare, the t-test and the ANOVA F-test are equivalent; the relation between ANOVA and t is given by F = t 2.

  4. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    Typically, however, the one-way ANOVA is used to test for differences among at least three groups, since the two-group case can be covered by a t-test (Gosset, 1908). When there are only two means to compare, the t-test and the F-test are equivalent; the relation between ANOVA and t is given by F = t 2.

  5. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    The F-test in ANOVA is an example of an omnibus test, which tests the overall significance of the model. A significant F test means that among the tested means, at least two of the means are significantly different, but this result doesn't specify exactly which means are different one from the other.

  6. F-distribution - Wikipedia

    en.wikipedia.org/wiki/F-distribution

    In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.

  7. ANOVA on ranks - Wikipedia

    en.wikipedia.org/wiki/ANOVA_on_ranks

    In statistics, one purpose for the analysis of variance (ANOVA) is to analyze differences in means between groups. The test statistic, F, assumes independence of observations, homogeneous variances, and population normality. ANOVA on ranks is a statistic designed for situations when the normality assumption has been violated.

  8. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    In order to understand this, it is necessary to understand the test used to evaluate differences between groups, the F-test. The F-test is computed by dividing the explained variance between groups (e.g., medical recovery differences) by the unexplained variance within the groups. Thus,

  9. Expected mean squares - Wikipedia

    en.wikipedia.org/wiki/Expected_mean_squares

    In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.