Search results
Results from the WOW.Com Content Network
Star formation. The Jeans instability is a concept in astrophysics that describes an instability that leads to the gravitational collapse of a cloud of gas or dust. [1] It causes the collapse of interstellar gas clouds and subsequent star formation. It occurs when the internal gas pressure is not strong enough to prevent the gravitational ...
Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. [1] Gravitational collapse is a fundamental mechanism for structure formation in the universe. Over time an initial, relatively smooth distribution of matter, after ...
The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets. The theory was developed by Immanuel Kant and ...
If a cloud is massive enough that the gas pressure is insufficient to support it, the cloud will undergo gravitational collapse. The mass above which a cloud will undergo such collapse is called the Jeans mass. The Jeans mass depends on the temperature and density of the cloud, but is typically thousands to tens of thousands of solar masses. [4]
The most basic gravitational stability analysis is the Jeans criteria, which addresses the balance between self-gravity and thermal pressure in a gas. In terms of the two above stability conditions, the system is stable if: i) thermal pressure balances the force of gravity, and ii) if the system is compressed slightly, the outward pressure ...
Mathematical models of gravitational instability in the gas layer predict a formation time within the timescale for the estimated cloud formation time. [14] [13] Once a molecular cloud assembles enough mass, the densest regions of the structure will start to collapse under gravity, creating star-forming clusters. This process is highly ...
The previous conditions are necessary to avoid gas cooling and, hence, fragmentation of the primordial gas cloud. Unable to fragment and form stars, the gas cloud undergoes a gravitational collapse of the entire structure, reaching extremely high matter density at its core, on the order of ~10 7 g/cm 3. [14]
Formation and evolution of the Solar System. There is evidence supporting a theory that the formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. [1] Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a ...