Ad
related to: protein structure and function biologyorigene.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Protein structure databases are critical for many efforts in computational biology such as structure based drug design, both in developing the computational methods used and in providing a large experimental dataset used by some methods to provide insights about the function of a protein.
Protein domains allow protein classification by a combination of sequence, structure and function, and they can be combined in many ways. In an early study of 170,000 proteins, about two-thirds were assigned at least one domain, with larger proteins containing more domains (e.g. proteins larger than 600 amino acids having an average of more ...
Protein primary structure is the linear sequence of amino acids in a peptide or protein. [1] By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthesis is most commonly performed by ribosomes in cells. Peptides can also be synthesized in the ...
The correct three-dimensional structure is essential to function, although some parts of functional proteins may remain unfolded, [3] indicating that protein dynamics are important. Failure to fold into a native structure generally produces inactive proteins, but in some instances, misfolded proteins have modified or toxic functionality.
In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist of several domains, and a domain may appear in a variety of different proteins.
Three-dimensional structure of a protein. Structural bioinformatics is the branch of bioinformatics that is related to the analysis and prediction of the three-dimensional structure of biological macromolecules such as proteins, RNA, and DNA.
(The tertiary structure of a protein consists of the way a polypeptide is formed of a complex molecular shape. This is caused by R-group interactions such as ionic and hydrogen bonds, disulphide bridges, and hydrophobic & hydrophilic interactions. Protein tertiary structure is the three-dimensional shape of a protein.
Currently, solid-state NMR is widely used in the field of structural biology to determine the structure and dynamic nature of proteins (protein NMR). [15] In 1990, Richard Henderson produced the first three-dimensional, high resolution image of bacteriorhodopsin using cryogenic electron microscopy (cryo-EM). [16]
Ad
related to: protein structure and function biologyorigene.com has been visited by 10K+ users in the past month