Search results
Results from the WOW.Com Content Network
A Nyquist plot is a parametric plot of a frequency response used in automatic control and signal processing. The most common use of Nyquist plots is for assessing the stability of a system with feedback. In Cartesian coordinates, the real part of the transfer function is plotted on the X -axis while the imaginary part is plotted on the Y -axis.
The M circle with M = 0.45 is highlighted in red and intercepts the Nyquist plot at frequencies . Hall circles (also known as M-circles and N-circles) are a graphical tool in control theory used to obtain values of a closed-loop transfer function from the Nyquist plot (or the Nichols plot) of the associated open-loop transfer function.
Transfer function. Function specifying the behavior of a component in an electronic or control system. In engineering, a transfer function (also known as system function[1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [2][3][4] It is widely used in ...
Figure 2 shows an example of EIS spectrum (presented in the Nyquist plot) simulated using the following parameters: R S = 20 Ω, C dl = 25 μF, R ct = 100 Ω, A W = 300 Ω•s −0.5. Values of the charge transfer resistance and Warburg coefficient depend on physico-chemical parameters of a system under investigation.
At t=0 the middle pulse is at its maximum and the sum of other impulses is zero. In communications, the Nyquist ISI criterion describes the conditions which, when satisfied by a communication channel (including responses of transmit and receive filters), result in no intersymbol interference or ISI. It provides a method for constructing band ...
Undersampling. Fig 1: The top 2 graphs depict Fourier transforms of 2 different functions that produce the same results when sampled at a particular rate. The baseband function is sampled faster than its Nyquist rate, and the bandpass function is undersampled, effectively converting it to baseband. The lower graphs indicate how identical ...
Numerous tools exist for the analysis of the poles of a system. These include graphical systems like the root locus, Bode plots or the Nyquist plots. Mechanical changes can make equipment (and control systems) more stable. Sailors add ballast to improve the stability of ships.
Dielectric spectroscopy (which falls in a subcategory of the impedance spectroscopy) measures the dielectric properties of a medium as a function of frequency. [2][3][4][5] It is based on the interaction of an external field with the electric dipole moment of the sample, often expressed by permittivity. It is also an experimental method of ...