enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  3. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    It follows that the left null space (the null space of A T) is the orthogonal complement to the column space of A. For a matrix A, the column space, row space, null space, and left null space are sometimes referred to as the four fundamental subspaces.

  4. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    The second proof [6] looks at the homogeneous system =, where is a with rank, and shows explicitly that there exists a set of linearly independent solutions that span the null space of . While the theorem requires that the domain of the linear map be finite-dimensional, there is no such assumption on the codomain.

  5. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...

  6. Block Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Block_Lanczos_algorithm

    In computer science, the block Lanczos algorithm is an algorithm for finding the nullspace of a matrix over a finite field, using only multiplication of the matrix by long, thin matrices. Such matrices are considered as vectors of tuples of finite-field entries, and so tend to be called 'vectors' in descriptions of the algorithm.

  7. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    Output An (n − k) × n matrix whose null space is S. Create a matrix A whose rows are b 1, b 2, ..., b k. Use elementary row operations to put A into reduced row echelon form. Let c 1, c 2, ..., c n be the columns of the reduced row echelon form. For each column without a pivot, write an equation expressing the column as a linear combination ...

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Mathematical applications of the SVD include computing the pseudoinverse, matrix approximation, and determining the rank, range, and null space of a matrix. The SVD is also extremely useful in all areas of science, engineering, and statistics, such as signal processing, least squares fitting of data, and process control.

  9. Null (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Null_(mathematics)

    A null space of a mapping is the part of the domain that is mapped into the null element of the image (the inverse image of the null element). For example, in linear algebra, the null space of a linear mapping, also known as kernel, is the set of vectors which map to the null vector under that mapping.