Search results
Results from the WOW.Com Content Network
Frequency. 1 in 100,000 live births. Glycogen storage disease type I (GSD I) is an inherited disease that prevents the liver from properly breaking down stored glycogen, which is necessary to maintain adequate blood sugar levels. GSD I is divided into two main types, GSD Ia and GSD Ib, which differ in cause, presentation, and treatment.
Cirrhosis, also known as liver cirrhosis or hepatic cirrhosis, and end-stage liver disease, is a condition of the liver in which the normal functioning tissue, or parenchyma, is replaced with scar tissue (fibrosis) and regenerative nodules as a result of chronic liver disease. [ 6 ][ 7 ][ 8 ] Damage to the liver leads to repair of liver tissue ...
Biopsy shows either abnormal accumulation or deficit of glycogen. Causes. Genetic. A glycogen storage disease (GSD, also glycogenosis and dextrinosis) is a metabolic disorder caused by a deficiency of an enzyme or transport protein affecting glycogen synthesis, glycogen breakdown, or glucose breakdown, typically in muscles and/or liver cells.
Acute liver failure is the appearance of severe complications rapidly after the first signs (such as jaundice) of liver disease, and indicates that the liver has sustained severe damage (loss of function of 80–90% of liver cells). The complications are hepatic encephalopathy and impaired protein synthesis (as measured by the levels of serum ...
The two organs most commonly affected are the liver and the skeletal muscle. Glycogen storage diseases that affect the liver typically cause hepatomegaly and hypoglycemia; those that affect skeletal muscle cause exercise intolerance, progressive weakness and cramping. [1] Glucose-6-phosphate isomerase deficiency affects step 2 of glycolysis.
Glycogen (black granules) in spermatozoa of a flatworm; transmission electron microscopy, scale: 0.3 μm. Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, [2] fungi, and bacteria. [3] It is the main storage form of glucose in the human body.
Method of glucose uptake differs throughout tissues depending on two factors; the metabolic needs of the tissue and availability of glucose.The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active ...
When ample glucose is available, glycogen synthesis proceeds at the periphery of the hepatocytes until the cells are replete with glycogen. Excess glucose is then increasingly converted into triglycerides for export and storage in adipose tissue. Glucokinase activity in the cytoplasm rises and falls with available glucose.