enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nondimensionalization - Wikipedia

    en.wikipedia.org/wiki/Nondimensionalization

    The function f(t) is known as the forcing function. If the differential equation only contains real (not complex) coefficients, then the properties of such a system behaves as a mixture of first and second order systems only. This is because the roots of its characteristic polynomial are either real, or complex conjugate pairs.

  3. Scale analysis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scale_analysis_(mathematics)

    Scale analysis anticipates within a factor of order one when done properly, the expensive results produced by exact analyses. Scale analysis rules as follows: Rule1-First step in scale analysis is to define the domain of extent in which we apply scale analysis. Any scale analysis of a flow region that is not uniquely defined is not valid.

  4. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain terms in the equations for the studied flow. This may provide possibilities to neglect terms in (certain areas of) the considered flow.

  5. Dimensionless quantity - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_quantity

    Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [2] [3] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units.

  6. Multiple-scale analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple-scale_analysis

    In mathematics and physics, multiple-scale analysis (also called the method of multiple scales) comprises techniques used to construct uniformly valid approximations to the solutions of perturbation problems, both for small as well as large values of the independent variables. This is done by introducing fast-scale and slow-scale variables for ...

  7. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.

  8. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    Standardization of the coefficient is usually done to answer the question of which of the independent variables have a greater effect on the dependent variable in a multiple regression analysis where the variables are measured in different units of measurement (for example, income measured in dollars and family size measured in number of individuals).

  9. Sommerfeld number - Wikipedia

    en.wikipedia.org/wiki/Sommerfeld_number

    Nikolai Pavlovich Petrov's method of lubrication analysis, which assumes a concentric shaft and bearing, was the first to explain the phenomenon of bearing friction.This method, which ultimately produces the equation known as Petrov's law (or Petroff's law), is useful because it defines groups of relevant dimensionless parameters, and predicts a fairly accurate coefficient of friction, even ...