enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radix - Wikipedia

    en.wikipedia.org/wiki/Radix

    However, other positional systems are possible, for example, golden ratio base (whose radix is a non-integer algebraic number), [5] and negative base (whose radix is negative). [6] A negative base allows the representation of negative numbers without the use of a minus sign. For example, let b = −10.

  3. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    In the base −2 representation, a signed number is represented using a number system with base −2. In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible.

  4. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    For example, in the decimal system (base 10), the numeral 4327 means (4×10 3) + (3×10 2) + (2×10 1) + (7×10 0), noting that 10 0 = 1. In general, if b is the base, one writes a number in the numeral system of base b by expressing it in the form a n b n + a n − 1 b n − 1 + a n − 2 b n − 2 + ... + a 0 b 0 and writing the enumerated ...

  5. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    For base 10 it is called a repeating decimal or recurring decimal. An irrational number has an infinite non-repeating representation in all integer bases. Whether a rational number has a finite representation or requires an infinite repeating representation depends on the base. For example, one third can be represented by:

  6. List of numeral systems - Wikipedia

    en.wikipedia.org/wiki/List_of_numeral_systems

    "A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]

  7. Bijective numeration - Wikipedia

    en.wikipedia.org/wiki/Bijective_numeration

    The bijective base-10 system is a base ten positional numeral system that does not use a digit to represent zero. It instead has a digit to represent ten, such as A. As with conventional decimal, each digit position represents a power of ten, so for example 123 is "one hundred, plus two tens, plus three units."

  8. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    While base ten is normally used for scientific notation, powers of other bases can be used too, [25] base 2 being the next most commonly used one. For example, in base-2 scientific notation, the number 1001 b in binary (=9 d) is written as 1.001 b × 2 d 11 b or 1.001 b × 10 b 11 b using binary numbers (or shorter 1.001 × 10 11 if binary ...

  9. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".