enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantitative models of the action potential - Wikipedia

    en.wikipedia.org/wiki/Quantitative_models_of_the...

    Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function g(V) with negative differential resistance (a negative slope on the I vs. V plot). For comparison, a normal resistor would have a positive slope, by Ohm's law I = GV, where the conductance G is the inverse of resistance G=1/R.

  3. Hodgkin–Huxley model - Wikipedia

    en.wikipedia.org/wiki/Hodgkin–Huxley_model

    The Hodgkin–Huxley model, or conductance-based model, is a mathematical model that describes how action potentials in neurons are initiated and propagated. It is a set of nonlinear differential equations that approximates the electrical engineering characteristics of excitable cells such as neurons and muscle cells.

  4. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    Equivalent electrical circuit for the Hodgkin–Huxley model of the action potential. I m and V m represent the current through, and the voltage across, a small patch of membrane, respectively. The C m represents the capacitance of the membrane patch, whereas the four g 's represent the conductances of four types of ions.

  5. Neural accommodation - Wikipedia

    en.wikipedia.org/wiki/Neural_accommodation

    During neuronal accommodation, the slowly rising depolarisation drives the activation and inactivation, as well as the potassium gates simultaneously and never evokes action potential. Failure to evoke action potential by ramp depolarisation of any strength had been a great puzzle until Hodgkin and Huxley created their physical model of action ...

  6. Soliton model in neuroscience - Wikipedia

    en.wikipedia.org/wiki/Soliton_model_in_neuroscience

    Persistence of action potential over wide temperature range An important assumption of the soliton model is the presence of a phase transition near the ambient temperature of the axon ("Formalism", above). Then, rapid change of temperature away from the phase transition temperature would necessarily cause large changes in the action potential.

  7. Biological neuron model - Wikipedia

    en.wikipedia.org/wiki/Biological_neuron_model

    The transient thickening of the cell membrane during action potential propagation is also not predicted by these models, nor is the changing capacitance and voltage spike that results from this thickening incorporated into these models. The action of some anesthetics such as inert gases is problematic for these models as well.

  8. Threshold potential - Wikipedia

    en.wikipedia.org/wiki/Threshold_potential

    In electrophysiology, the threshold potential is the critical level to which a membrane potential must be depolarized to initiate an action potential. In neuroscience , threshold potentials are necessary to regulate and propagate signaling in both the central nervous system (CNS) and the peripheral nervous system (PNS).

  9. Squid giant axon - Wikipedia

    en.wikipedia.org/wiki/Squid_giant_axon

    Action potentials travel faster in an axon with a large diameter than a smaller one, [5] and squid have evolved the giant axon to improve the speed of their escape response. The increased radius of the squid axon decreases the internal resistance of the axon, as resistance is inversely proportional to the cross sectional area of the object.