enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantitative models of the action potential - Wikipedia

    en.wikipedia.org/wiki/Quantitative_models_of_the...

    Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function g(V) with negative differential resistance (a negative slope on the I vs. V plot). For comparison, a normal resistor would have a positive slope, by Ohm's law I = GV, where the conductance G is the inverse of resistance G=1/R.

  3. Hodgkin–Huxley model - Wikipedia

    en.wikipedia.org/wiki/Hodgkin–Huxley_model

    The Hodgkin–Huxley model, or conductance-based model, is a mathematical model that describes how action potentials in neurons are initiated and propagated. It is a set of nonlinear differential equations that approximates the electrical engineering characteristics of excitable cells such as neurons and muscle cells .

  4. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize.

  5. Biological neuron model - Wikipedia

    en.wikipedia.org/wiki/Biological_neuron_model

    The transient thickening of the cell membrane during action potential propagation is also not predicted by these models, nor is the changing capacitance and voltage spike that results from this thickening incorporated into these models. The action of some anesthetics such as inert gases is problematic for these models as well.

  6. Neural accommodation - Wikipedia

    en.wikipedia.org/wiki/Neural_accommodation

    During neuronal accommodation, the slowly rising depolarisation drives the activation and inactivation, as well as the potassium gates simultaneously and never evokes action potential. Failure to evoke action potential by ramp depolarisation of any strength had been a great puzzle until Hodgkin and Huxley created their physical model of action ...

  7. Cardiac action potential - Wikipedia

    en.wikipedia.org/wiki/Cardiac_action_potential

    The standard model used to understand the cardiac action potential is that of the ventricular myocyte. Outlined below are the five phases of the ventricular myocyte action potential, with reference also to the SAN action potential. Figure 2a: Ventricular action potential (left) and sinoatrial node action potential (right) waveforms.

  8. Soliton model in neuroscience - Wikipedia

    en.wikipedia.org/wiki/Soliton_model_in_neuroscience

    Persistence of action potential over wide temperature range An important assumption of the soliton model is the presence of a phase transition near the ambient temperature of the axon ("Formalism", above). Then, rapid change of temperature away from the phase transition temperature would necessarily cause large changes in the action potential.

  9. Action potential pulse - Wikipedia

    en.wikipedia.org/wiki/Action_potential_pulse

    The action potential pulse is a model of the speed an action potential that is dynamically dependent upon the position and number of ion channels, and the shape and make up of the axon. The action potential pulse model takes into account entropy and the conduction speed of the action potential along an axon.