Search results
Results from the WOW.Com Content Network
The elements of the dynamic array are stored contiguously at the start of the underlying array, and the remaining positions towards the end of the underlying array are reserved, or unused. Elements can be added at the end of a dynamic array in constant time by using the reserved space, until this space is completely consumed. When all space is ...
Although the technique originated in Smalltalk, [1] the best-known language that uses this technique is Java. Since the machine code emitted by a dynamic compiler is constructed and optimized at program runtime, the use of dynamic compilation enables optimizations for efficiency not available to statically-compiled programs (i.e. those compiled ...
Object Pascal dynamic arrays are allocated on the heap. [12] In this language, it is called a dynamic array. The declaration of such a variable is similar to the declaration of a static array, but without specifying its size. The size of the array is given at the time of its use.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine.
The earliest published JIT compiler is generally attributed to work on LISP by John McCarthy in 1960. [4] In his seminal paper Recursive functions of symbolic expressions and their computation by machine, Part I, he mentions functions that are translated during runtime, thereby sparing the need to save the compiler output to punch cards [5] (although this would be more accurately known as a ...
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code:
Multiple dispatch or multimethods is a feature of some programming languages in which a function or method can be dynamically dispatched based on the run-time (dynamic) type or, in the more general case, some other attribute of more than one of its arguments. [1]
In dynamic languages, however, they provide access to the inner workings of the compiler, and full access to the interpreter, virtual machine, or runtime, allowing the definition of language-like constructs which can optimize code or modify the syntax or grammar of the language. Assembly, C, C++, early Java, and Fortran do not generally fit ...