enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    Kinetic energy is the movement energy of an object. Kinetic energy can be transferred between objects and transformed into other kinds of energy. [10] Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy.

  4. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.

  5. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    According to the assumptions of the kinetic theory of ideal gases, one can consider that there are no intermolecular attractions between the molecules, or atoms, of an ideal gas. In other words, its potential energy is zero. Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas.

  6. Inelastic collision - Wikipedia

    en.wikipedia.org/wiki/Inelastic_collision

    In such a collision, kinetic energy is lost by bonding the two bodies together. This bonding energy usually results in a maximum kinetic energy loss of the system. It is necessary to consider conservation of momentum: (Note: In the sliding block example above, momentum of the two body system is only conserved if the surface has zero friction.

  7. Maxwell–Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann...

    The original derivation in 1860 by James Clerk Maxwell was an argument based on molecular collisions of the Kinetic theory of gases as well as certain symmetries in the speed distribution function; Maxwell also gave an early argument that these molecular collisions entail a tendency towards equilibrium.

  8. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    Physically, the turbulence kinetic energy is characterized by measured root-mean-square (RMS) velocity fluctuations. In the Reynolds-averaged Navier Stokes equations, the turbulence kinetic energy can be calculated based on the closure method, i.e. a turbulence model.

  9. k–omega turbulence model - Wikipedia

    en.wikipedia.org/wiki/K–omega_turbulence_model

    The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first variable being the turbulence kinetic energy (k) while the second (ω) is the specific rate of dissipation (of the turbulence kinetic energy k into internal thermal energy).