Search results
Results from the WOW.Com Content Network
Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession. [4] Data science is "a concept to unify statistics, data analysis, informatics, and their related methods" to "understand and analyze actual phenomena" with data. [5]
Data science process flowchart from Doing Data Science, by Schutt & O'Neil (2013) Analysis refers to dividing a whole into its separate components for individual examination. [ 10 ] Data analysis is a process for obtaining raw data , and subsequently converting it into information useful for decision-making by users. [ 1 ]
Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]
Informatics (a combination of the words "information" and "automatic") is the study of computational systems. [1] [2] According to the ACM Europe Council and Informatics Europe, informatics is synonymous with computer science and computing as a profession, [3] in which the central notion is transformation of information.
A data structure known as a hash table.. In computer science, a data structure is a data organization and storage format that is usually chosen for efficient access to data. [1] [2] [3] More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, [4] i.e., it is an algebraic structure about data.
UML class diagram of a Graph (abstract data type) The basic operations provided by a graph data structure G usually include: [1] adjacent(G, x, y): tests whether there is an edge from the vertex x to the vertex y; neighbors(G, x): lists all vertices y such that there is an edge from the vertex x to the vertex y;
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
Social data scientists use both digitized data [22] (e.g. old books that have been digitized) and natively digital data (e.g. social media posts). [23] Since such data often take the form of found data that were originally produced for other purposes (commercial, governance, etc.) than research, data scraping, cleaning and other forms of preprocessing and data mining occupy a substantial part ...