Search results
Results from the WOW.Com Content Network
Sample-rate conversion prevents changes in speed and pitch that would otherwise occur when transferring recorded material between such systems. More specific types of resampling include: upsampling or upscaling; downsampling, downscaling, or decimation; and interpolation. The term multi-rate digital signal processing is sometimes used to refer ...
When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions:
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles/second .
A frequency distribution table is an arrangement of the values that one or more variables take in a sample. Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample. This is an example of a univariate ...
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing , the Nyquist rate , named after Harry Nyquist , is a value equal to twice the highest frequency ( bandwidth ) of a given function or signal.
44,100 Hz, a customary rate used to sample audible frequencies is based on the limits of human hearing and the sampling theorem; Balian–Low theorem, a similar theoretical lower bound on sampling rates, but which applies to time–frequency transforms
A lower value of n will also lead to a useful sampling rate. For example, using n = 4, the FM band spectrum fits easily between 1.5 and 2.0 times the sampling rate, for a sampling rate near 56 MHz (multiples of the Nyquist frequency being 28, 56, 84, 112, etc.). See the illustrations at the right.