enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.

  3. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern. It is different from X-ray crystallography which exploits X-ray diffraction to determine the arrangement of atoms in materials, and also has other components such as ways to map from experimental diffraction measurements to the positions of atoms.

  4. Rietveld refinement - Wikipedia

    en.wikipedia.org/wiki/Rietveld_refinement

    Rietveld refinement is a technique described by Hugo Rietveld for use in the characterisation of crystalline materials. The neutron and X-ray diffraction of powder samples results in a pattern characterised by reflections (peaks in intensity) at certain positions. The height, width and position of these reflections can be used to determine many ...

  5. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis.

  6. R-factor (crystallography) - Wikipedia

    en.wikipedia.org/wiki/R-factor_(crystallography)

    There is no theoretical maximum, but in practice, values are considerably less than one even for poor models, provided the model includes a suitable scale factor. Random experimental errors in the data contribute to R {\displaystyle R} even for a perfect model, and these have more leverage when the data are weak or few, such as for a low ...

  7. Wide-angle X-ray scattering - Wikipedia

    en.wikipedia.org/wiki/Wide-angle_X-ray_scattering

    It is an X-ray-diffraction [2] method and commonly used to determine a range of information about crystalline materials. The term WAXS is commonly used in polymer sciences to differentiate it from SAXS but many scientists doing "WAXS" would describe the measurements as Bragg/X-ray/powder diffraction or crystallography.

  8. X-ray filter - Wikipedia

    en.wikipedia.org/wiki/X-ray_filter

    X-ray filters are also used for X-ray diffraction, in determinations of the interatomic spaces of crystalline solids. These lattice spacings can be determined using Bragg diffraction, but this technique requires scans to be done with approximately monochromatic X-ray beams. Thus, filter set ups like the copper nickel system described above are ...

  9. X-ray spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_spectroscopy

    WDS is widely used in microprobes (where X-ray microanalysis is the main task) and in XRF; it is widely used in the field of X-ray diffraction to calculate various data such as interplanar spacing and wavelength of the incident X-ray using Bragg's law.