enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  3. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    This equation denotes an uncertainty relation in quantum physics. For example, with time (the observable A), the energy E (from the Hamiltonian H) gives: where is the uncertainty in energy; is the uncertainty in time

  4. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on.

  5. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    This also means the constraint forces do not add to the instantaneous power.) The time integral of this scalar equation yields work from the instantaneous power, and kinetic energy from the scalar product of acceleration with velocity. The fact that the work–energy principle eliminates the constraint forces underlies Lagrangian mechanics. [28]

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...

  9. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]