Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Thermus aquaticus is a species of bacteria that can tolerate high temperatures, one of several thermophilic bacteria that belong to the Deinococcota phylum. It is the source of the heat-resistant enzyme Taq DNA polymerase, one of the most important enzymes in molecular biology because of its use in the polymerase chain reaction (PCR) DNA amplification technique.
Plants store myrosinase glucosinolates by compartmentalization, such that the latter is released and activated only when the plant is under attack. Myrosinase is stored largely as myrosin grains in the vacuoles of particular idioblasts called myrosin cells, but have also been reported in protein bodies or vacuoles , and as cytosolic enzymes ...
An enzyme's activity decreases markedly outside its optimal temperature and pH, and many enzymes are (permanently) denatured when exposed to excessive heat, losing their structure and catalytic properties. Some enzymes are used commercially, for example, in the synthesis of antibiotics.
Benefits of exoenzyme production can also be lost after secretion because the enzymes are liable to denature, degrade or diffuse away from the producer cell. Enzyme production and secretion is an energy intensive process [14] and, because it consumes resources otherwise available for reproduction, there is evolutionary pressure to conserve ...
Thermolabile enzymes are also studied for their applications in DNA replication techniques, such as PCR, where thermostable enzymes are necessary for proper DNA replication. Enzyme function at higher temperatures may be enhanced with trehalose , which opens up the possibility of using normally thermolabile enzymes in DNA replication.
Endo-1,4-β-xylanase (EC 3.2.1.8, systematic name 4-β-D-xylan xylanohydrolase) is any of a class of enzymes that degrade the linear polysaccharide xylan into xylose, [1] thus breaking down hemicellulose, one of the major components of plant cell walls: Endohydrolysis of (1→4)-β-D-xylosidic linkages in xylans
Many proteins are extremely temperature-sensitive, and in many cases can start to denature at temperatures of only 4 degrees Celsius. Within the microchannels, temperatures exceed 4 degrees Celsius, but the machine is designed to cool quickly so that the time the cells are exposed to elevated temperatures is extremely short ( residence time 25 ...