Search results
Results from the WOW.Com Content Network
A timeline of mathematical logic ; see also history of logic. 19th century 1847 – George Boole proposes symbolic logic in The Mathematical Analysis of Logic, defining what is now called Boolean algebra. 1854 – George Boole perfects his ideas, with the publication of An Investigation of the Laws of Thought. 1874 – Georg Cantor proves that the set of all real numbers is uncountably ...
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory , proof theory , set theory , and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
The history of logic deals with the study of the development of the science of valid inference ().Formal logics developed in ancient times in India, China, and Greece.Greek methods, particularly Aristotelian logic (or term logic) as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. [1]
The two subjects of mathematical logic and set theory have belonged to mathematics since the end of the 19th century. [46] [47] Before this period, sets were not considered to be mathematical objects, and logic, although used for mathematical proofs, belonged to philosophy and was not specifically studied by mathematicians. [48]
It became the standard foundation of modern mathematics, and, unless the contrary is explicitly specified, it is used in all modern mathematical texts, generally implicitly. Simultaneously, the axiomatic method became a de facto standard: the proof of a theorem must result from explicit axioms and previously proved theorems by the application ...
Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.
An infinite sequence of real numbers (in blue). This sequence is neither increasing, decreasing, convergent, nor Cauchy. It is, however, bounded. In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms).