Search results
Results from the WOW.Com Content Network
Finally, there were nine sums, having odd denominators, converted from Egyptian fractions: 2/3, 1/3 (twice), 1/5, 1/7, 1/9, 1/11, 1/13 and 1/15. The British Museum examiners found no introduction or description to how or why the equivalent unit fraction series were computed. [ 4 ]
Problems 1–6 compute divisions of a certain number of loaves of bread by 10 men and record the outcome in unit fractions. Problems 7–20 show how to multiply the expressions 1 + 1/2 + 1/4 = 7/4, and 1 + 2/3 + 1/3 = 2 by different fractions. Problems 21–23 are problems in completion, which in modern notation are simply subtraction problems.
In the rare case that these other methods all fail, Fibonacci suggests a "greedy" algorithm for computing Egyptian fractions, in which one repeatedly chooses the unit fraction with the smallest denominator that is no larger than the remaining fraction to be expanded: that is, in more modern notation, we replace a fraction x / y by the ...
These 17 camels leave one camel left over, which the judge takes back as his own. [2] This is possible as the sum of the fractions is less than one: 1 / 2 + 1 / 3 + 1 / 9 = 17 / 18 . Some sources point out an additional feature of this solution: each son is satisfied, because he receives more camels than his ...
6 1 2 1 1 −1 4 5 9. and would be written in modern notation as 6 1 / 4 , 1 1 / 5 , and 2 − 1 / 9 (i.e., 1 8 / 9 ). The horizontal fraction bar is first attested in the work of Al-Hassār (fl. 1200), [35] a Muslim mathematician from Fez, Morocco, who specialized in Islamic inheritance jurisprudence.
An interesting feature of ancient Egyptian mathematics is the use of unit fractions. [7] The Egyptians used some special notation for fractions such as 1 / 2 , 1 / 3 and 2 / 3 and in some texts for 3 / 4 , but other fractions were all written as unit fractions of the form 1 / n or sums of such unit ...
A template for displaying common fractions of the form int+num/den nicely. It supports 0–3 anonymous parameters with positional meaning. Template parameters [Edit template data] Parameter Description Type Status leftmost part 1 Denominator if only parameter supplied. Numerator if 2 parameters supplied. Integer if 3 parameters supplied. If no parameter is specified the template will render a ...
By applying the fundamental recurrence formulas we may easily compute the successive convergents of this continued fraction to be 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, ..., where each successive convergent is formed by taking the numerator plus the denominator of the preceding term as the denominator in the next term, then adding in the ...