Search results
Results from the WOW.Com Content Network
DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life. The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides.
Nucleoside – Any of several glycosylamines comprising a nucleobase and a sugar molecule; Nucleotide – Biological molecules constituting nucleic acids; Nucleic acid notation – Universal notation using the Roman characters A, C, G, and T to call the four DNA nucleotides; Nucleic acid sequence – Succession of nucleotides in a nucleic acid
Radioactive sulfur-35 was used to label the protein sections of the T2 phage, because sulfur is contained in protein but not DNA. [ 6 ] Hershey and Chase inserted the radioactive elements in the bacteriophages by adding the isotopes to separate media within which bacteria were allowed to grow for 4 hours before bacteriophage introduction.
In nucleic acid, nucleobases are held together by hydrogen bonding, which only works efficiently between adenine and thymine and between guanine and cytosine. The base complement A = T shares two hydrogen bonds, while the base pair G ≡ C has three hydrogen bonds. All other configurations between nucleobases would hinder double helix formation.
Nucleic acids RNA (left) and DNA (right). Nucleic acids are large biomolecules that are crucial in all cells and viruses. [1] They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid ...
Nucleic acids are formed when nucleotides come together through phosphodiester linkages between the 5' and 3' carbon atoms. [3] A nucleic acid sequence is the order of nucleotides within a DNA (GACT) or RNA (GACU) molecule that is determined by a series of letters.
Each unit is joined when a covalent bond forms between its phosphate group and the pentose sugar of the next nucleotide, forming a sugar-phosphate backbone. DNA is a complementary, double stranded structure as specific base pairing (adenine and thymine, guanine and cytosine) occurs naturally when hydrogen bonds form between the nucleotide bases.
Appropriate geometrical correspondence of hydrogen bond donors and acceptors allows only the "right" pairs to form stably. DNA with high GC-content is more stable than DNA with low GC-content, but contrary to popular belief, the hydrogen bonds do not stabilize the DNA significantly and stabilization is mainly due to stacking interactions. [2]