Search results
Results from the WOW.Com Content Network
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.
Since all the inequalities are in the same form (all less-than or all greater-than), we can examine the coefficient signs for each variable. Eliminating x would yield 2*2 = 4 inequalities on the remaining variables, and so would eliminating y. Eliminating z would yield only 3*1 = 3 inequalities so we use that instead.
Given the general non-homogeneous linear differential equation ″ + ′ + = and a single solution () of the homogeneous equation [() =], let us try a solution of the full non-homogeneous equation in the form: = () where () is an arbitrary function.
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative. On the other hand, r 1 – r 2 and r 1 – r 3 are complex conjugates, and their product is real and positive. [ 23 ]
The first algorithm for polynomial decomposition was published in 1985, [6] though it had been discovered in 1976, [7] and implemented in the Macsyma/Maxima computer algebra system. [8] That algorithm takes exponential time in worst case, but works independently of the characteristic of the underlying field .
Similarly, Fraunhofer's Analog Insydes Mathematica package can be used to derive DAEs from a netlist and then simplify or even solve the equations symbolically in some cases. [8] [9] It is worth noting that the index of a DAE (of a circuit) can be made arbitrarily high by cascading/coupling via capacitors operational amplifiers with positive ...
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).