Search results
Results from the WOW.Com Content Network
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...
This equation gives the entropy in the units of "bits" (per symbol) because it uses a logarithm of base 2, and this base-2 measure of entropy has sometimes been called the shannon in his honor. Entropy is also commonly computed using the natural logarithm (base e, where e is Euler's number), which produces a measurement of entropy in nats per ...
The shannon also serves as a unit of the information entropy of an event, which is defined as the expected value of the information content of the event (i.e., the probability-weighted average of the information content of all potential events). Given a number of possible outcomes, unlike information content, the entropy has an upper bound ...
The Shannon entropy (in nats) is: = = = and if entropy is measured in units of per nat, then the entropy is given by: = which is the Boltzmann entropy formula, where is the Boltzmann constant, which may be interpreted as the thermodynamic entropy per nat.
Shannon entropy has been related by physicist Léon Brillouin to a concept sometimes called negentropy. In 1953, Brillouin derived a general equation [10] stating that the changing of an information bit value requires at least kT ln(2) energy.
It also developed the concepts of information entropy, redundancy and the source coding theorem, and introduced the term bit (which Shannon credited to John Tukey) as a unit of information. It was also in this paper that the Shannon–Fano coding technique was proposed – a technique developed in conjunction with Robert Fano.
Shannon originally wrote down the following formula for the entropy of a continuous distribution, known as differential entropy: = ().Unlike Shannon's formula for the discrete entropy, however, this is not the result of any derivation (Shannon simply replaced the summation symbol in the discrete version with an integral), and it lacks many of the properties that make the discrete entropy a ...
In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the statistical limits to possible data compression for data whose source is an independent identically-distributed random variable, and the operational meaning of the Shannon entropy. Named after Claude Shannon, the source coding theorem shows that ...