Search results
Results from the WOW.Com Content Network
In Euclidean geometry two rays with a common endpoint form an angle. [14] The definition of a ray depends upon the notion of betweenness for points on a line. It follows that rays exist only for geometries for which this notion exists, typically Euclidean geometry or affine geometry over an ordered field.
A line arrangement in the projective plane differs from its Euclidean counterpart in that the two Euclidean rays at either end of a line are replaced by a single edge in the projective plane that connects the leftmost and rightmost vertices on that line, and in that pairs of unbounded Euclidean cells are replaced in the projective plane by ...
Half-line (geometry) or ray, half of a line split at an initial point Directed half-line or ray, half of a directed or oriented line split at an initial point; Ray (graph theory), an infinite sequence of vertices such that each vertex appears at most once in the sequence and each two consecutive vertices in the sequence are the two endpoints of an edge in the graph
In geometry, a line segment is a part of a straight line that is bounded by two distinct endpoints (its extreme points), and contains every point on the line that is between its endpoints. It is a special case of an arc , with zero curvature .
A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point. A normal vector of length one is called a unit normal vector.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
By definition the moment vector is perpendicular to every displacement along the line, so d ⋅ m = 0, where "⋅" denotes the vector dot product. Although neither direction d nor moment m alone is sufficient to determine the line L , together the pair does so uniquely, up to a common (nonzero) scalar multiple which depends on the distance ...