Search results
Results from the WOW.Com Content Network
Electroluminescence — The phenomenon wherein a material emits light in response to an electric current passed through it, or to a strong electric field. Electrostatic induction — Redistribution of charges in a conductor inside an external static electric field, such as when a charged object is brought close.
An electric field (sometimes called E-field [1]) is a physical field that surrounds electrically charged particles.In classical electromagnetism, the electric field of a single charge (or group of charges) describes their capacity to exert attractive or repulsive forces on another charged object.
As the electric field is defined in terms of force, and force is a vector, having both magnitude and direction, it follows that an electric field is a vector field. [25]: 469–70 The study of electric fields created by stationary charges is called electrostatics. The field may be visualised by a set of imaginary lines whose direction at any ...
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
A field can be classified as a scalar field, a vector field, a spinor field or a tensor field according to whether the represented physical quantity is a scalar, a vector, a spinor, or a tensor, respectively. A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field ...
An electric field is produced when the charge is stationary with respect to an observer measuring the properties of the charge, and a magnetic field as well as an electric field are produced when the charge moves, creating an electric current with respect to this observer. Over time, it was realized that the electric and magnetic fields are ...
It describes the electric field produced by charged particles and by charge distributions. According to Gauss's law, the flux (or flow) of electric field through any closed surface is proportional to the amount of charge that is enclosed by that surface. [9] [10] This means that the greater the charge, the greater the electric field that is ...
In addition, relativity theory implies that in moving frames of reference, a magnetic field transforms to a field with a nonzero electric component and conversely, a moving electric field transforms to a nonzero magnetic component, thus firmly showing that the phenomena are two sides of the same coin. Hence the term "electromagnetism".