Search results
Results from the WOW.Com Content Network
Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields.
Clearly, a #P problem must be at least as hard as the corresponding NP problem, since a count of solutions immediately tells if at least one solution exists, if the count is greater than zero. Surprisingly, some #P problems that are believed to be difficult correspond to easy (for example linear-time) P problems. [ 18 ]
For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v , an optimization problem might be "find a path from u to v that uses the fewest edges".
A problem statement is a description of an issue to be addressed, or a condition to be improved upon. It identifies the gap between the current problem and goal. The first condition of solving a problem is understanding the problem, which can be done by way of a problem statement. [1]
Troubleshooting is needed to identify the symptoms. Determining the most likely cause is a process of elimination—eliminating potential causes of a problem. Finally, troubleshooting requires confirmation that the solution restores the product or process to its working state.
An optimization problem asks for finding a "best possible" solution among the set of all possible solutions to a search problem. One example is the maximum independent set problem: "Given a graph G, find an independent set of G of maximum size." Optimization problems are represented by their objective function and their constraints.
The solution = is in fact a valid solution to the original equation; but the other solution, =, has disappeared. The problem is that we divided both sides by x {\displaystyle x} , which involves the indeterminate operation of dividing by zero when x = 0. {\displaystyle x=0.}
A decision problem is a yes-or-no question on an infinite set of inputs. It is traditional to define the decision problem as the set of possible inputs together with the set of inputs for which the answer is yes. [1] These inputs can be natural numbers, but can also be values of some other kind, like binary strings or strings over some other ...