Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
SpaceEngine is an interactive 3D planetarium and astronomy software [2] initially developed by Russian astronomer and programmer Vladimir Romanyuk. [3] Development is now continued by Cosmographic Software, an American company founded by Romanyuk and the SpaceEngine Team in February 2022, based in Connecticut.
Venus lacks an internal dynamo, and its weakly induced magnetosphere is caused by atmospheric interactions with the solar wind. Internal heat escapes through active volcanism, resulting in resurfacing instead of plate tectonics. Venus is one of two planets in the Solar System, the other being Mercury, that have no moons.
move to sidebar hide. From Wikipedia, the free encyclopedia
Venus only has an induced magnetosphere formed by the Sun's magnetic field carried by the solar wind. [46] This process can be understood as the field lines wrapping around an obstacle—Venus in this case. The induced magnetosphere of Venus has a bow shock, magnetosheath, magnetopause and magnetotail with the current sheet. [46] [47]
As of 2022, the precise location of the Solar System in the clouds is an open question in astronomy. [259] Within 10 light-years of the Sun there are relatively few stars, the closest being the triple star system Alpha Centauri, which is about 4.4 light-years away and may be in the Local Bubble's G-Cloud. [260]
Venus to scale among the Inner Solar System planetary-mass objects, arranged by the order of their orbits outward from the Sun (from left: Mercury, Venus, Earth, the Moon, Mars and Ceres) Venus is one of the four terrestrial planets in the Solar System, meaning that it is a rocky body like Earth.
The magnetosphere contains charged particles that are trapped from the stellar wind, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles. [13] As stars emit matter with a stellar wind from the photosphere, the magnetosphere creates a torque on the ejected matter.