enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    In particular this proved that π is transcendental since e πi is algebraic, and thus answered in the negative the problem of antiquity as to whether it was possible to square the circle. Karl Weierstrass developed their work yet further and eventually proved the Lindemann–Weierstrass theorem in 1885.

  3. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    Accurate rounding of transcendental mathematical functions is difficult because the number of extra digits that need to be calculated to resolve whether to round up or down cannot be known in advance. This problem is known as "the table-maker's dilemma".

  4. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    A transcendental number is a (possibly complex) number that is not the root of any integer polynomial. Every real transcendental number must also be irrational, since a rational number is the root of an integer polynomial of degree one. [17] The set of transcendental numbers is uncountably infinite.

  5. Lindemann–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Lindemann–Weierstrass...

    The theorem is also known variously as the Hermite–Lindemann theorem and the Hermite–Lindemann–Weierstrass theorem.Charles Hermite first proved the simpler theorem where the α i exponents are required to be rational integers and linear independence is only assured over the rational integers, [4] [5] a result sometimes referred to as Hermite's theorem. [6]

  6. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...

  7. Gelfond–Schneider constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond–Schneider_constant

    Part of the seventh of Hilbert's twenty-three problems posed in 1900 was to prove, or find a counterexample to, the claim that a b is always transcendental for algebraic a ≠ 0, 1 and irrational algebraic b. In the address he gave two explicit examples, one of them being the Gelfond–Schneider constant 2 √ 2.

  8. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]

  9. Hilbert's seventh problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventh_problem

    Hilbert's seventh problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns the irrationality and transcendence of certain numbers ( Irrationalität und Transzendenz bestimmter Zahlen ).