enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr or 3 σ, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean ...

  3. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.

  4. Approximation error - Wikipedia

    en.wikipedia.org/wiki/Approximation_error

    Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)

  5. Approximation - Wikipedia

    en.wikipedia.org/wiki/Approximation

    For example, 1.5 × 10 6 means that the true value of something being measured is 1,500,000 to the nearest hundred thousand (so the actual value is somewhere between 1,450,000 and 1,550,000); this is in contrast to the notation 1.500 × 10 6, which means that the true value is 1,500,000 to the nearest thousand (implying that the true value is ...

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Many root-finding processes work by interpolation. This consists in using the last computed approximate values of the root for approximating the function by a polynomial of low degree, which takes the same values at these approximate roots. Then the root of the polynomial is computed and used as a new approximate value of the root of the ...

  7. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    Using the squeeze theorem, [4] we can prove that ⁡ =, which is a formal restatement of the approximation ⁡ for small values of θ. A more careful application of the squeeze theorem proves that lim θ → 0 tan ⁡ ( θ ) θ = 1 , {\displaystyle \lim _{\theta \to 0}{\frac {\tan(\theta )}{\theta }}=1,} from which we conclude that tan ⁡ ( θ ...

  9. Pell number - Wikipedia

    en.wikipedia.org/wiki/Pell_number

    This sequence of approximations begins ⁠ 1 / 1 ⁠, ⁠ 3 / 2 ⁠, ⁠ 7 / 5 ⁠, ⁠ 17 / 12 ⁠, and ⁠ 41 / 29 ⁠, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers ; these numbers form a second infinite ...