enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: type I , which has two subtypes, and type II , which can also be divided into two subtypes (though usually is not).

  3. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The oscillation of a function at a point quantifies these discontinuities as follows: in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits of the two sides);

  4. Removable singularity - Wikipedia

    en.wikipedia.org/wiki/Removable_singularity

    A graph of a parabola with a removable singularity at x = 2 In complex analysis , a removable singularity of a holomorphic function is a point at which the function is undefined , but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.

  5. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]

  6. L'Hôpital's rule - Wikipedia

    en.wikipedia.org/wiki/L'Hôpital's_rule

    A simple but very useful consequence of L'Hopital's rule is that the derivative of a function cannot have a removable discontinuity. That is, suppose that f is continuous at a , and that f ′ ( x ) {\displaystyle f'(x)} exists for all x in some open interval containing a , except perhaps for x = a {\displaystyle x=a} .

  7. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Since the Gibbs phenomenon comes from undershooting, it may be eliminated by using kernels that are never negative, such as the Fejér kernel. [12] [13]In practice, the difficulties associated with the Gibbs phenomenon can be ameliorated by using a smoother method of Fourier series summation, such as Fejér summation or Riesz summation, or by using sigma-approximation.

  8. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    A Darboux function is a real-valued function ƒ which has the "intermediate value property": for any two values a and b in the domain of ƒ, and any y between ƒ(a) and ƒ(b), there is some c between a and b with ƒ(c) = y. [4] By the intermediate value theorem, every continuous function on a real interval is a Darboux function. Darboux's ...

  9. Talk:Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Talk:Classification_of...

    The term removable discontinuity is sometimes broadened to include a removable singularity, in which the limits in both directions exist and are equal, while the function is undefined at the point This use is an abuse of terminology because continuity and discontinuity of a function are concepts defined only for points in the function's domain.

  1. Related searches are removable discontinuities continuous change in two equations calculator

    discontinuity of monotonemonotone function discontinuities