enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    The feature with the optimal split i.e., the highest value of information gain at a node of a decision tree is used as the feature for splitting the node. The concept of information gain function falls under the C4.5 algorithm for generating the decision trees and selecting the optimal split for a decision tree node. [1] Some of its advantages ...

  3. Information gain ratio - Wikipedia

    en.wikipedia.org/wiki/Information_gain_ratio

    In decision tree learning, information gain ratio is a ratio of information gain to the intrinsic information. It was proposed by Ross Quinlan, [1] to reduce a bias towards multi-valued attributes by taking the number and size of branches into account when choosing an attribute. [2] Information gain is also known as mutual information. [3]

  4. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    The left tree is the decision tree we obtain from using information gain to split the nodes and the right tree is what we obtain from using the phi function to split the nodes. The resulting tree from using information gain to split the nodes. Now assume the classification results from both trees are given using a confusion matrix.

  5. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The information gain in decision trees (,), which is equal to the difference between the entropy of and the conditional entropy of given , quantifies the expected information, or the reduction in entropy, from additionally knowing the value of an attribute . The information gain is used to identify which attributes of the dataset provide the ...

  6. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    To construct a decision tree on this data, we need to compare the information gain of each of four trees, each split on one of the four features. The split with the highest information gain will be taken as the first split and the process will continue until all children nodes each have consistent data, or until the information gain is 0.

  7. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    Calculate the entropy of every attribute of the data set . Partition ("split") the set into subsets using the attribute for which the resulting entropy after splitting is minimized; or, equivalently, information gain is maximum. Make a decision tree node containing that attribute.

  8. Get breaking Finance news and the latest business articles from AOL. From stock market news to jobs and real estate, it can all be found here.

  9. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the normalized information gain (difference in entropy). The attribute with the highest normalized information gain is chosen to make the decision.