Search results
Results from the WOW.Com Content Network
A radial hyperbolic trajectory is a non-periodic trajectory on a straight line where the relative speed of the two objects always exceeds the escape velocity. There are two cases: the bodies move away from each other or towards each other. This is a hyperbolic orbit with semi-minor axis = 0 and eccentricity = 1.
Such an orbit also has a velocity equal to the escape velocity and therefore will escape the gravitational pull of the planet. If the speed of a parabolic orbit is increased it will become a hyperbolic orbit. Escape orbit: A parabolic orbit where the object has escape velocity and is moving away from the planet.
A spacecraft that is leaving the central body on a hyperbolic trajectory has more than enough energy to escape: = | | > where = is the standard gravitational parameter, is the semi-major axis of the orbit's hyperbola (which may be negative in some convention).
For an elliptic orbit the specific orbital energy is the negative of the additional energy required to accelerate a mass of one kilogram to escape velocity (parabolic orbit). For a hyperbolic orbit, it is equal to the excess energy compared to that of a parabolic orbit.
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...
Strogatz notes that "hyperbolic is an unfortunate name—it sounds like it should mean 'saddle point'—but it has become standard." [1] Several properties hold about a neighborhood of a hyperbolic point, notably [2] Orbits near a two-dimensional saddle point, an example of a hyperbolic equilibrium. A stable manifold and an unstable manifold exist,
Radial hyperbolic trajectory: a non-periodic orbit where the relative speed of the two objects always exceeds the escape velocity. There are two cases: the bodies move away from each other or towards each other. This is a hyperbolic orbit with semi-minor axis = 0 and eccentricity = 1. Although the eccentricity is 1 this is not a parabolic orbit.
In the case of hyperbolic dynamics, the corresponding notion is that of the hyperbolic set. Example hyperbolic flow, illustrating stable and unstable manifolds. The vector field equation is (+ (),). The stable manifold is the x-axis, and the unstable manifold is the other asymptotic curve crossing the x-axis.