enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    The Fourier series is a method of expressing a periodic function in terms of sinusoidal basis functions. Taking C[−π,π] to be the space of all real-valued functions continuous on the interval [−π,π] and taking the inner product to be , = ()

  3. Spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Spherical_harmonics

    Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of SO(3) , the group of rotations in three dimensions, and thus play a central ...

  4. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...

  5. Mathieu function - Wikipedia

    en.wikipedia.org/wiki/Mathieu_function

    Mathieu functions of the first kind can be represented as Fourier series: [5] ... satisfy orthogonality relations = = = Moreover, with fixed and ...

  6. Associated Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Associated_Legendre...

    The Legendre polynomials are closely related to hypergeometric series. In the form of spherical harmonics, they express the symmetry of the two-sphere under the action of the Lie group SO(3). There are many other Lie groups besides SO(3), and analogous generalizations of the Legendre polynomials exist to express the symmetries of semi-simple ...

  7. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form.When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval:

  8. Schur orthogonality relations - Wikipedia

    en.wikipedia.org/wiki/Schur_orthogonality_relations

    In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups , such as the rotation group SO(3) .

  9. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.