Search results
Results from the WOW.Com Content Network
Gottfried Wilhelm Leibniz (or Leibnitz; [a] 1 July 1646 [O.S. 21 June] – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to many other branches of mathematics, such as binary arithmetic and statistics.
The foundational crisis of mathematics arose at the end of the 19th century and the beginning of the 20th century with the discovery of several paradoxes or counter-intuitive results. The first one was the proof that the parallel postulate cannot be proved.
It created mathematical proof for the Pythagorean theorem, [111] and a mathematical formula for Gaussian elimination. [112] The treatise also provides values of π , [ 106 ] which Chinese mathematicians originally approximated as 3 until Liu Xin (d. 23 AD) provided a figure of 3.1457 and subsequently Zhang Heng (78–139) approximated pi as 3. ...
[8] [9] Islamic mathematics, in turn, developed and expanded the mathematics known to these civilizations. [10] Contemporaneous with but independent of these traditions were the mathematics developed by the Maya civilization of Mexico and Central America, where the concept of zero was given a standard symbol in Maya numerals.
The independence of the mathematical objects is such that they are non physical and do not exist in space or time. Neither does their existence rely on thought or language. For this reason, mathematical proofs are discovered, not invented. The proof existed before its discovery, and merely became known to the one who discovered it. [13]
Mathematical proof is the gateway to a realm of transcendent truth. Reasoning is logic, and logic is essentially mathematical. Hence mathematics structures all possible reasoning. Because mathematics exists independently of human beings, and reasoning is essentially mathematical, reason itself is disembodied.
Aristotelian views of (cardinal or counting) numbers begin with Aristotle's observation that the number of a heap or collection is relative to the unit or measure chosen: "'number' means a measured plurality and a plurality of measures ... the measure must always be some identical thing predicable of all the things it measures, e.g. if the things are horses, the measure is 'horse'."
Archimedes' other mathematical achievements include deriving an approximation of pi (π), defining and investigating the Archimedean spiral, and devising a system using exponentiation for expressing very large numbers. He was also one of the first to apply mathematics to physical phenomena, working on statics and hydrostatics.